DISC FLAT

REMOVABLE CONCEALED CONNECTOR

COMBINED LOADS

Combined shear-tensile load bearing capacity due to tightening provided by the pass-through rod. CE mark according to ETA.

PRACTICAL

Simple to install thanks to the possibility of being tightened after the assembly. Fast and precise fastening thanks to LBS screws.

DISASSEMBLED

Usable for temporary structures, it can be easily removed thanks to the pass-through rod.

CHARACTERISTICS

FOCUS universal joints					
TIMBER SECTIONS	from 100 x 100 mm to 280 x 280 mm				
STRENGTH	R _v over 60 kN, R _{ax} over 100 kN				
FASTENERS	LBS, KOS				

VIDEO

Scan the QR Code and watch the video on our YouTube channel

MATERIAL

Bright zinc plated carbon steel, three dimensional perforated plate.

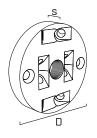
FIELDS OF USE

Timber-to-timber shear joints along all directions of the secondary beam

- solid timber and glulam
- CLT, LVL
- timber based panels

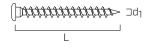
AESTHETICS

Completely concealed joint to ensure a pleasant aesthetic appearance.

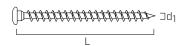

VERSATILITY

Usable in various applications, allowing to realize shear and tensile joints among the timber elements.

CODES AND DIMENSIONS


CODE	D	S	s M		pcs
	[mm]	[mm]	[mm]		
DISCF55	55	10	12	10	16
DISCF80	80	15	16	10	8
DISCF120	120	15	20	18	4

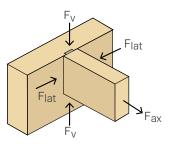
Screws not included in the box.


LBS for DISCF55

CODE	d_1	L	L b		pcs
	[mm]	[mm]	[mm]		
LBS550	5	50	46	TX20	200
LBS560	5	60	56	TX20	200
LBS570	5	70	66	TX20	200

LBS for DISCF80 and DISCF120

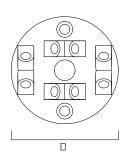
CODE	d_1	L b		TX	pcs
	[mm]	[mm]	[mm]		
LBS760	7	60	55	TX30	100
LBS780	7	80	75	TX30	100
LBS7100	7	100	95	TX30	100

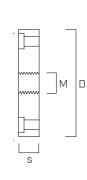


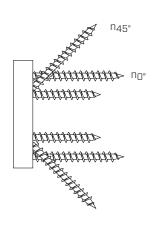
MATERIAL AND DURABILITY

DISC FLAT: bright zinc plated carbon steel.

To be used in service classes 1 and 2 (EN 1995-1-1).

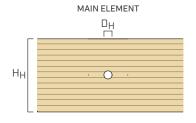

EXTERNAL LOADS

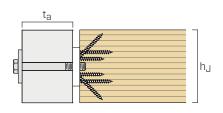


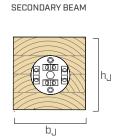

FIELDS OF USE

- Timber-to-timber joints between solid timber, glulam, LVL and CLT structural elements
- Timber-to-steel joints
- Timber to concrete joints

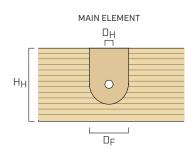
GEOMETRY

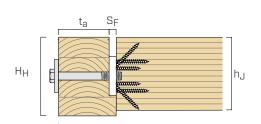

■ MINIMUM DIMENSIONS

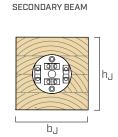

DISC FLAT CONNECTOR	SCREWS	SECONDARY BEAM		MAIN ELEMENT			
	Ø x L	b _{J,min}	h _{J,min}	H _{H,min} *	D _H	S _F	D _F
	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]
	LBS Ø5 x 50	100	100	110			
DISCF55	LBS Ø5 x 60	110	110	115	13	11	56
	LBS Ø5 x 70	130	130	130			
	LBS Ø7 x 60	120	120	150			
DISCF80	LBS Ø7 x 80	150	150	165	17	16	81
	LBS Ø7 x 100	180	180	180			
DISCF120	LBS Ø7 x 80	160	160	200	21	16	121
D13C1 120	LBS Ø7 x 100	190	190	215	21	10	121

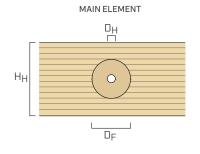

^{*} H_{H,min} is only valid in case of installation with grooving. For installation without grooving, the minimum bolt distances according to EN 1995-1-1 apply.

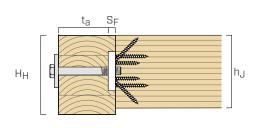
INSTALLATION

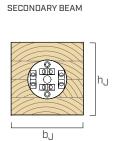

WITHOUT SLOT



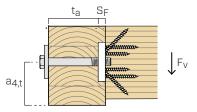


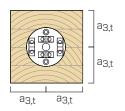

WITH OPEN SLOT



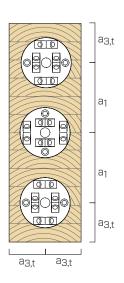


WITH ROUND SLOT

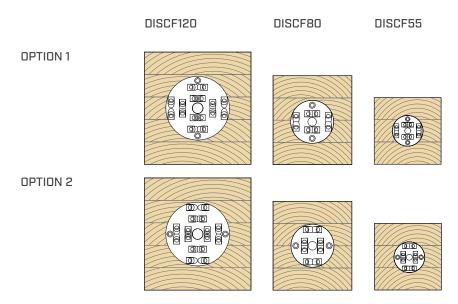



SPACING

connector	screws Ø x L	a ₁	a _{3,t}	a _{4,t}
	[mm]	[mm]	[mm]	[mm]
	LBS Ø5 x 50	90	50	
DISCF55	LBS Ø5 x 60	105	55	60
	LBS Ø5 x 70	120	65	
	LBS Ø7 x 60	110	60	
DISCF80	LBS Ø7 x 80	140	75	90
	LBS Ø7 x 100	170	90	
DISCF120	LBS Ø7 x 80	150	80	120
DISCETTO	LBS Ø7 x 100	180	95	120


MAIN ELEMENT INSTALLATION WITH GROOVING

SECONDARY BEAM SINGLE INSTALLATION



SECONDARY BEAM MULTIPLE INSTALLATION

■ INSTALLATION OPTIONS

The direction of the connector makes no difference. It can be installed according to OPTION 1 or OPTION 2.

FASTENERS

DISC FLAT CONNECTOR	SCR	EWS		
	n _{45°}	n _{0°}	bolts for fastening on timber	washers for timber
	[pcs - Ø]	[pcs - Ø]	[pcs - Ø]	[pcs - Ø]
DISCF55	8 - LBS Ø5	2 - LBS Ø5	1 - KOS M12	1 - ULS1052 M12
DISCF80	8 - LBS Ø7	2 - LBS Ø7	1 - KOS M16	1 - ULS1052 M16
DISCF120	16 - LBS Ø7	2 - LBS Ø7	1 - KOS M20	1 - ULS1052 M20

STATIC VALUES

SECONDARY BEAM SIDE STRENGTHS

connector	screws Ø x L [mm]	b_{J,min} x h_{J,min} [mm]	$R_{v,screws,k} = R_{lat,screws,k}$ [kN]		$R_{ax,screws,k}$ [kN]	
			GL24h ⁽¹⁾	LVL (2)	GL24h ⁽¹⁾	LVL (2)
	LBS Ø5 x 50	100 x 100	9,60	8,03	17,01	11,64
DISCF55	LBS Ø5 x 60	110 x 110	11,83	9,89	20,96	14,34
	LBS Ø5 x 70	130 x 130	14,06	11,76	24,91	17,04
	LBS Ø7 x 60	120 x 120	14,69	12,28	26,10	17,91
DISCF80	LBS Ø7 x 80	150 x 150	20,94	17,51	37,16	25,47
	LBS Ø7 x 100	180 x 180	27,19	22,73	48,22	33,03
DISCF120	LBS Ø7 x 80	160 x 160	41,88	48,15	70,66	81,24
DISCFIZU	LBS Ø7 x 100	190 x 190	54,38	62,52	91,72	105,46

SHEAR STRENGTH ON MAIN ELEMENT SIDE

connector	R _{v,main,k} ⁽⁸⁾ [kN]								
		VITHOUT SLC	T	WITH GROOVING					
	bea	ım	column wall		beam		column		
	GL24h ⁽¹⁾	LVL (2)	GL24h ⁽¹⁾	LVL (2)	CLT ⁽³⁾	GL24h ⁽¹⁾	LVL (2)	GL24h ⁽¹⁾	LVL (2)
DISCF55	13,9	14,3	19,9	23,0	19,0	25,1	28,3	35,6	42,5
DISCF80	21,2	21,7	31,0	37,5	25,7	40,8	46,2	58,6	71,9
DISCF120	34,1	35,0	48,1	54,4	32,8	71,1	80,0	98,7	117,5

connector	R _{lat,main,k} (8) [kN]								
	WITHOUT SLOT					WITH GROOVING ⁽⁷⁾			
	bea	ım	column wall		beam		column		
	GL24h ⁽¹⁾	LVL (2)	GL24h ⁽¹⁾	LVL (2)	CLT ⁽³⁾	GL24h ⁽¹⁾	LVL (2)	GL24h ⁽¹⁾	LVL (2)
DISCF55	19,9	23,0	13,9	14,3	17,5	35,6	42,5	25,1	28,3
DISCF80	31,0	37,5	21,2	21,7	23,8	58,6	71,9	40,8	46,2
DISCF120	48,1	54,4	34,1	35,0	30,7	98,7	117,5	71,1	80,0

TENSILE STRENGTH ON MAIN ELEMENT SIDE

connector	$R_{ax,main,k}[kN]$							
	GL24h ⁽⁴⁾	LVL (5)	CLT ⁽⁶⁾					
DISCF55	18,7	22,4	17,9					
DISCF80	25,3	30,4	24,3					
DISCF120	34,8	41,8	33,5					

CONNECTION STIFFNESS

The sliding module can be calculated according to ETA-19/0706, with the following expressions:

$$K_{ax,ser} = 150 \text{ kN/mm}$$

$$K_{v,ser} = K_{lat,ser} = \frac{\rho_m^{1.5} \cdot d}{23} kN/mm$$
 For shear stressed connectors in timber-to-timber joints

$$K_{v,ser} = K_{lat,ser} = 70 \cdot d^2 \, kN/mm$$
 For shear stressed connectors in steel-to-timber joints

where:

- d is the bolt diameter in mm;
- ρ_m is the average density of the main element, in kg/m³.

NOTES:

- $^{(1)}$ Values calculated according to ETA-19/0706. $\rho_{\text{K}}{=}385~\text{kg/m}^3$ has been taken in consideration in the calculation.
- $^{(2)}$ Values calculated according to ETA-19/0706. $\rho_k {=}\, 480 kg/m^3$ has been taken in consideration in the calculation.
- $^{(3)}$ Values calculated according to ETA-19/0706. $\rho_k{=}350 kg/m^3$ has been taken in consideration in the calculation.
- $^{(4)}$ Values calculated according to ETA-19/0706 with DIN1052 washers, they must be recalculated if other washers are used. $f_{c,90,k}$ =2.5 MPa has been considered in the calculation.
- $^{(5)}$ Values calculated according to ETA-19/0706 with DIN1052 washers, they must be recalculated if other washers are used. $f_{c.90,k}$ =3,0 MPa has been considered in the calculation.
- (6) Values calculated according to ETA-19/0706 with DIN1052 washers, they must be recalculated if other washers are used. $f_{c,90,k}$ =2,4 MPa has been considered in the calculation.
- $^{(7)}$ When using the connector with grooving in the main beam, if a F_{lat} stress is applied, it is necessary to perform a closed circular grooving.
- $^{\rm (8)}$ The strength values have been calculated for a usable bolt length of:
 - $-t_a = 100 \text{ mm for DISCF55 on beam or column};$
 - t_a = 120 mm for DISCF80 on beam or column;
 - t_a = 180 mm for DISCF120 on beam or column;
 - t_a = 100 mm for DISCF55, DISCF80 and DISCF120 on wall.

In the case of longer or shorter lengths, the strengths can be calculated $% \left(1\right) =\left(1\right) \left(1\right)$ according to ETA-19/0706.

GENERAL PRINCIPLES:

• The characteristic strength values of the connection are obtained as follows:

$$R_{v,k} = min \quad \begin{cases} R_{v,screws,k} \\ R_{v,main,k} \end{cases}$$

$$R_{ax,k} = min \quad \begin{cases} R_{ax,screws,k} \\ R_{ax,main,k} \end{cases}$$

$$R_{lat,k} = min \quad \begin{cases} R_{lat,screws,k} \\ R_{lat,main,k} \end{cases}$$

• The design values are obtained from the characteristic values as follows: The coefficients γ_M and k_{mod} should be taken according to the current regulations used for the calculation.

$$R_d = \frac{R_k \cdot k_{mod}}{\gamma_M}$$

- In case of combined $F_{\nu\nu}$ F_{ax} and F_{lat} stress the following expression must be fulfilled:

$$\left(\frac{F_{ax,d}}{R_{ax,d}}\right)^2 + \frac{F_{v,d}}{R_{v,d}} + \frac{F_{lat,d}}{R_{lat,d}} \le 1$$

- Dimensioning and verification of the timber elements must be carried out
- In case of steel or concrete main element, the calculation of $R_{\nu_i main,k}$, R_{ax_i} $_{main,k}$ and $R_{lat,main,k}$ must be performed by the designer. The calculation of the relative design values must be carried out using the γ_M coefficients to be assumed according to the regulations in force used for the calculation.
- There are two options or installation on secondary beam (option 1/option 2). The strengths do not vary in both cases. In case of multiple installation, it is recommended to install the connectors alternating them with option 1 and option 2.
- If several connector are used, the strengths on screw side $(F_{v,screw}s,F_{ax-})$,screws, F_{lat,screws}) can be multiplied by the number of connectors.
- If several connectors are used, the calculation of the connection on the main element side must be carried out by the designer in accordance with chapters 8.5 and 8.9 EN 1995-1-1.
- · Screws with the same length must be used in all holes.